HPRC is a dedicated computing resource used for cutting-edge, collaborative, and transformative research and discovery at Texas A&M University.

Since 1989, the High Performance Research Computing (HPRC) has been a dedicated resource for research and discovery at Texas A&M. HPRC, formerly known as the Supercomputing Facility, has been transformed from a mere service facility to an interdisciplinary research center advancing computational and data-enabled science and engineering with a broad mission for advancing research, education, outreach, training and service since January 2016. HPRC supports more than 3000 users, including more than 500 faculty members. HPRC resources are used for cutting-edge, collaborative, and transformative research including, but not limited to, AI/ML, materials and drugs development, quantum computing and optimization, climate prediction and resilience. HPRC promotes advanced computing and emerging technologies to researchers and assists users in using them for research and discovery.

New users can apply for accounts at hprc.tamu.edu. The website offers training and documentation for HPRC systems and software. HPRC provides a broad range of regularly scheduled training sessions and workshops for our users. These sessions may be included in formal classes that have a technical and scientific computing focus. HPRC also hosts the Summer Computing Academy to promote computing among middle and high school students.
RESOURCES AVAILABLE

GRACE
Grace is the university’s flagship supercomputer, a heterogeneous HPC cluster. The Grace cluster is composed of 800 regular compute nodes, 100 A100 GPU compute nodes, 15 A40 GPU compute nodes, 17 single precision T4/RTX6000 GPU compute nodes, 8 large memory (3 TB) compute nodes, 5 login nodes, and 6 management servers. The Grace cluster has an HDR 3:1 InfiniBand interconnect and 5+ PB of usable high-performance storage running Lustre parallel filesystem.

ACES
Accelerating Computing for Emerging Sciences (ACES) is a dynamically composable high-performance data analysis and computing platform funded by NSF. Ninety percent of ACES resources is made available to national research community via NSF ACCESS program. ACES leverage Liquid’s composable framework on Intel's Sapphire Rapids processors to offer a rich of accelerators testbed containing Intel Optane memory and DDN Lustre storage interconnected with Mellanox NDR 400Gbps (gigabit-per-second) InfiniBand to support workflows that benefit from optimized devices. ACES allows researchers to creatively develop new programming models and workflows that utilize these architectures while simultaneously advancing HPC, Artificial Intelligence(AI), and data science projects. ACES is available to the national research community and Texas A&M researchers now.

LONESTAR
Lonestar-6, a Lonestar cluster hosted at the Texas Advanced Computing Center at The University of Texas at Austin, employs Dell Servers with AMD's EPYC Milan processor, Mellanox’s HDR Infiniband technology, and 8 PB of BeeGFS based storage on Dell storage hardware. Total of 74,368 core with a peak performance of 7TFlops per compute node. Jointly funded by The University of Texas System, Texas A&M University, Texas Tech University, and the University of North Texas, Lonestar provides additional resources to Texas A&M researchers. Allocation requests are made through the HPRC request page.

FASTER
FASTER (Fostering Accelerated Scientific Transformations, Education, and Research) is a novel composable high-performance data-analysis and computing instrument funded by the NSF MRI program. FASTER adopts the innovative Liquid composable software-hardware approach combined with cutting-edge technologies such as Intel Ice Lake 32-core 2.2GHz CPUs, NVIDIA A100/A40/A30/A10/T4 GPUs, NVMe based storage, and high-speed Infiniband HDR interconnect. FASTER is a 184-node cluster built by Dell and has 40 A100, 200 T4, 8 A40, 8 A10, and 4 A30 GPUs. Each compute node can compose more than 16 GPUs of various types via Liquid PCIe fabrics. The FASTER platform removes significant bottlenecks in research computing by leveraging composable technology that can dynamically integrate disaggregated GPUs to a single node, allowing HPC/AI workflows to flexibly choose the type and number of GPUs to fit their needs. Thirty percent of FASTER's computing resources are allocated to researchers nationwide by NSF ACCESS program. FASTER is in production and open to NSF ACCESS and Texas A&M users.

VIDAL
A 24-node secure and compliant computing environment supports data intensive research using sensitive person level data or proprietary licensed data to meet the myriad legal requirements of handling such data (e.g., HIPAA, Texas HB 300, NDA). It has 16 compute nodes with 192 GB Ram each and 4 large memory nodes with 1.5 TB Ram each, and 4 GPU nodes with 192 GB Ram and two NVIDIA V100 GPUs each.

LAUNCH
The LAUNCH is a regional computing cluster funded by NSF CC* program to mainly support TAMU System researchers. It is composed of 35 compute nodes and 10 GPU nodes. The compute nodes feature 2 AMD EPYC 2.40 GHz processors with 96 cores each and 384GB of DDR5 memory. The GPU nodes feature 2 NVIDIA A30 GPUs each, 2 AMD EPYC 2.40 GHz processors with 96 cores each, and 768GB of DDR5 memory. The system uses an HDR100 GB InfiniBand interconnect.

UPCOMING SYSTEMS

VIDAL 2.0
An 18-node, 2304-core secure and compliant computing environment supports data intensive research using sensitive person level data or proprietary licensed data to meet the myriad legal requirements of handling such data (e.g., HIPAA, PHI, Texas HB 300, NDA). It has 10 compute nodes with 384 GB Ram each, 4 large memory nodes with 3.0 TB Ram each, and 4 GPU nodes with 384 GB Ram and two NVIDIA H100 94GB HBM3 GPUs each. Each compute node has 2 64-core AMD EPYC 2.45GHz processors. It has 3PB usable high performance IBM ESS storage. VIDAL 2.0 is funded by Texas A&M Health Science Center and Texas A&M Research Development Fund (RDF) and will replace VIDAL in fall 2024.

ADVANCED SUPPORT PROGRAM (ASP)
HPRC provides technical assistance to research teams across campus that goes beyond general consulting.

HPRC offers collaborations in research projects with a large computational component. Under the ASP, one or more HPRC analysts will contribute expertise and experience in several areas of high performance computing.

OUR COLLABORATIVE CONTRIBUTIONS INCLUDE:
- porting applications to our clusters
- analyzing and optimizing code performance
- developing parallel code from serial versions and analyzing performance
- bioinformatics and genomics
- optimizing serial and parallel I/O code performance
- optimal use of mathematical libraries
- code development and design

Produced by Research Communications 7/2024